If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-18x-50=0
a = 4.9; b = -18; c = -50;
Δ = b2-4ac
Δ = -182-4·4.9·(-50)
Δ = 1304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1304}=\sqrt{4*326}=\sqrt{4}*\sqrt{326}=2\sqrt{326}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{326}}{2*4.9}=\frac{18-2\sqrt{326}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{326}}{2*4.9}=\frac{18+2\sqrt{326}}{9.8} $
| 5y^2+8=28 | | 33/44=9/t | | 2g=15-7g | | 3(20x+50)=690 | | 10x-3=15x+5 | | 6x+5=5x+8+7x | | 3x-5(x-3)=-5+4x+2 | | 5x^2=-16x-12 | | 1/4(8z+4)-6=1/2(10-8z) | | 6x=18.75 | | 8(d+4)=8(d-2) | | y/7=4+-17 | | 71-2x=5 | | 1,062=6(x+16) | | 3x+9-6(x+1)=4x+7 | | -16t^2+80t+32=0 | | 5^(3x-8)*·5^(4x)=25^(2x) | | 2m-20=180 | | 30+6p=7(p+6) | | -3x-15x-51=3 | | x+43=2x-6x-5 | | 3v+12-8v=-8 | | -n-15=28 | | x-5x-5=-20 | | (16x+4)+(3x+10)=110 | | 6x-3x+4-2x=7x+6 | | 6x-3x+4-2x=7x+2 | | y+2y+3y=-18 | | 2.5+1.5p=0.4p | | y-2=(5)-2 | | 3(3a-2)=3/4(4-2a) | | 2x-6-8x=12 |